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COMMENT 

Comment on the deformation of quantum mechanics 

Ki-So0 Chung and Won-Sang Chung 
Theory Group, Department of Physics, College of Natural Sciences. Gyeongsang National 
University. linju 660-701. Korea 

Received 14 March 1994 

Abstract. 
and present the correct version for the q-deformed quanhlm mechanics. 

In this comment we point out a serious mistake in a recent paper by Li and Sheng 

Recently Li and Sheng [ 11 presented the one-dimensional q-deformed Schrodinger equation 
for the real deformation parameter q.  In this comment we point out a serious mistake in [l]. 
Moreover we recommend the correct way to obtain the q-deformed Schrodinger equation 
by using the generalized deformed algbera [2] presented by us. 

In [2] we considered the generalized deformed algebra 

(1) 
where we restricted the analysis to the case of p = 0 and o[ # 1. Then the relation between 
the number operator and mode operator is given by the generalized deformed q-number 

aa t - qa+a = qaN+p 

The new q-derivative is defined as 

. 

which satisfies the following deformed Leibniz rule 

D ( f ( x ) s ( x ) )  = f (qex )Dg(x )  + D f ( x ) s ( q x )  
= Df (x )g (qux)  + f ( q x ) D g ( x ) .  

Letting f ( x )  = x in equation (4) leads to 
Dx - q'xD = $ 
D x - q x D = G '  

where 4 is defined as 

B f ( 4  = f ( q x ) .  
Similarly, we obtain 

$0 = q - ' D + .  
Then the q-integral is easily defined as 

(7) 
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we obtain 

(19) + - - -w-l+-*-lD, D - q  
Then we obtain the Hermitian momentum operator: 

p = i+-'et')/2g, (20) 

P+ = P. (7-1) 

We can easily check that 

Therefore, the correct q-deformed Schrbdinger equation is given by 

__ 1 , - ( n + 1 ) / 2 ~ ~ - ( ( I t I ) / Z D ~ ( n )  + __ (01+ ' ) k x 2 W ( x )  = EqW(x)  (22) 2m 2 
where Ep denotes a q-deformed energy eigenvalue. 

q-deformed one-dimensional Schrodinger equation. 
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